
Mathematical Finance
Dylan Possamaï

Assignment 8

We fix throughout a probability space (Ω, F ,P) on which we are given a filtration F, unless otherwise stated.

Barrier options

We consider in this exercise a frictionless financial market in continuous–time, without arbitrage opportunities, which
contains one non–risky asset whose value at 0 is normalised to 1, and one risky asset with non–negative price process
(St)t≥0. The information flow is encoded in the filtration F, which is simply generated by S. We fix a European style
payoff function f : R −→ R, as well as some maturity T > 0, and a barrier L > 0. Barrier options are of 4 types

(i) An Up–and–In barrier option with payoff f and upper barrier L pays f(ST ) at time T if the barrier L has been
crossed from below before T . In other words, its payoff is f(ST )1{sup0≤t≤T St≥L}. Its value at time t will be
denoted by UIt(T, L; S, f(ST )).

(ii) An Up–and–Out barrier option with payoff f and upper barrier L pays f(ST ) at time T if the barrier L has not
been crossed from below before T . In other words, its payoff is f(ST )1{sup0≤t≤T St<L}. Its value at time t will be
denoted by UOt(T, L; S, f(ST )).

(iii) A Down–and–In barrier option with payoff f and lower barrier L pays f(ST ) at time T if the barrier L has been
crossed from above before T . In other words, its payoff is f(ST )1{inf0≤t≤T St≤L}. Its value at time t will be denoted
by DIt(T, L; S, f(ST )).

(iv) A Down–and–Out barrier option with payoff f and lower barrier L pays f(ST ) at time T if the barrier L has not
been crossed from above before T . In other words, its payoff is f(ST )1{inf0≤t≤T St>L}. Its value at time t will be
denoted by DOt(T, L; S, f(ST )).

We also denote by Pt(T ; S, f(ST )) the price at time t ∈ [0, T ] of the (standard) European option with maturity T and
payoff f(ST ). Finally, we say that a barrier option is regular if its payoff function is zero at and beyond the barrier.
More precisely, for a Down type option this means that f(x) = 0 for x ≤ L, and f(x) = 0 for x ≥ L for an In type
option. When this is not the case, the barrier option is called reverse.

1) Show that for any t ∈ [0, T ]

UIt(T, L; S, f(ST )) + UOt(T, L; S, f(ST )) = Pt(T ; S, f(ST )),
DIt(T, L; S, f(ST )) + DOt(T, L; S, f(ST )) = Pt(T ; S, f(ST )).

Deduce that as long as we know Pt(T ; S, f(ST )), it is sufficient to study barrier options of type In. We will therefore
concentrate on these in the rest of the exercise.

2) Show that for any t ∈ [0, T ], we have

UIt(T, L; S, f(ST )) = UIt

(
T, L; S, f(ST )1{ST <L}

)
+ Pt

(
T ; S, f(ST )1{ST ≥L}

)
,

DIt(T, L; S, f(ST )) = DIt

(
T, L; S, f(ST )1{ST >L}

)
+ Pt

(
T ; S, f(ST )1{ST ≤L}

)
.

Deduce that as long as we know Pt

(
T ; S, f(ST )1{ST ≥L}

)
and Pt

(
T ; S, f(ST )1{ST ≤L}

)
, it is sufficient to study regular

barrier options of type In. We will therefore concentrate on these in the rest of the exercise, meaning that the
payoff f is from now on regular.
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3) From now on (that is until the end of the exercise), we consider the Black–Scholes model, that is to say that we
consider a filtered probability space (Ω, F ,F = (Ft)t≥0,Q), where Q is directly assumed to be a risk–neutral measure,
under which the dynamics of the unique risky asset S in the market is given by

St = S0 +
∫ t

0
rSsds +

∫ t

0
σSsdBQ

s , t ≥ 0,

where r ≥ 0 is the short–term interest rate. We define γ := 1 − 2r
σ2 . Show that the process (Sγ

t )t≥0 is an
(F,Q)−martingale (this is S to the power γ here). Deduce that we can define a probability measure Q̂ equiva-
lent to Q such that the density, on Ft, of Q̂ with respect to Q is

dQ̂
dQ = Sγ

t

Sγ
0

, t ∈ [0, T ].

4) Using Girsanov’s theorem, show that the following symmetry relationship holds

EQ[
f(ST )

∣∣Ft

]
= EQ

[(
ST

St

)γ

f

(
S2

t

ST

)∣∣∣∣Ft

]
, t ∈ [0, T ],

and deduce that
Pt(T ; S, f(ST )) = Pt

(
T ; S,

(
ST

St

)γ

f

(
S2

t

ST

))
, t ∈ [0, T ].

5) Fix now some t ∈ [0, T ]. If sup0≤s≤t Ss ≥ L, compute UIt(T, L; S, f(ST )), and if inf0≤s≤t Ss ≤ L, compute
DIt(T, L; S, f(ST )).

6) In this question we concentrate on the Up–and–In regular barrier option. Fix again some t ∈ [0, T ] and assume now
that sup0≤s≤t Ss < L. We define then τL(t) to be the first instant after t when the risky asset price S goes above
the barrier L. In other words

τL(t) := inf
{

s ≥ t : Ss ≥ L
}

.

Why do you have SτL(t) = L? Show then, using the tower property for conditional expectations1, that

EQ[
f(ST )1{sup0≤s≤T Ss≥L}

∣∣Ft

]
= EQ[

f(ST )1{τL(t)≤T }
∣∣Ft

]
= EQ

[(
ST

L

)γ

f

(
L2

ST

)∣∣∣∣Ft

]
.

Hint: do not forget to use the fact that the payoff function f is assumed to be regular, implying in the case of the
Up–and–In option that f(x) = 0 for x ≥ L.

7) In this question we concentrate on the Down–and–In regular barrier option. Fix again some t ∈ [0, T ] and assume
now that inf0≤s≤t Ss > L. We define then ρL(t) to be the first instant after t when the risky asset price S goes below
the barrier L. In other words

ρL(t) := inf
{

s ≥ t : Ss ≤ L
}

.

Why do you have SρL(t) = L? Show then, using the tower property for conditional expectations, that

EQ[
f(ST )1{inf0≤s≤T Ss≤L}f(ST )

∣∣Ft

]
= EQ[

f(ST )1{ρL(t)≤T }f(ST )
∣∣Ft

]
= EQ

[(
ST

L

)γ

f

(
L2

ST

)∣∣∣∣Ft

]
.

8) Deduce from 6) and 7) that for any t ∈ [0, T ], when sup0≤s≤t Ss < L we have

UIt(T, L; S, f(ST )) = Pt

(
T ;

(
ST

L

)γ

f

(
L2

ST

))
,

1Keep in mind that despite the fact that τL(t) is a random variable, you can use all the properties that you know, in particular you can
condition with respect to FτL(t), and the event {τL(t) ≤ T } belongs to FτL(t).
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and when inf0≤s≤t Ss > L

DIt(T, L; S, f(ST )) = Pt

(
T ;

(
ST

L

)γ

f

(
L2

ST

))
.

Deduce a static replication strategy for the regular Up–and–In and Down–and–In barrier options (that is to say a
replication strategy for these options which only invests in the market at the beginning of the period and then does
not rebalance the portfolio until maturity). You can assume that all European options with maturity T are available
to trade on the market.

9) Prove Proposition 7.6.10 in the lecture notes.
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